# MOORESTOWN TOWNSHIP PUBLIC SCHOOLS MOORESTOWN, NEW JERSEY 

Moorestown Upper Elementary School Mathematics

Mathematics Enriched<br>Grade 6

Date: February 2020
Prepared by: Tracy Butterline, Vanessa Cahall, Kara Long Supervisor: Julie Colby

## Contents

Administration<br>\title{ Course Description and Fundamental Concepts }

## New Jersey Student Learning Standards

## Pacing Guide

Units

Dr. Sandra Alberti, President

Ms. Caryn Shaw, Vice President

Mr. Jack Fairchild
Ms. Alexandria Law
Ms. Katherine Mullin
Ms. Lauren Romano
Dr. Mark Snyder
Mr. Mark Villanueva
Mr. David Weinstein

## Administration

Dr. Scott McCartney, Superintendent of Schools
Ms. Carole Butler, Director of Curriculum \& Instruction
Dr. David Tate, Director of Special Education
Mr. Jeffrey Arey, Director of Educational Technology
Mr. James Heiser, Business Administrator/Board Secretary
Ms. Debora Belfield, Director of Personnel

## Principals

Mr. Andrew Seibel, Moorestown High School
Mr. Matthew Keith, William Allen Middle School
Ms. Susan Powell, Moorestown Upper Elementary School
Ms. Michelle Rowe, George C. Baker School
Mr. Brian Carter, Mary E. Roberts School
Ms. Heather Hackl, South Valley School

## Supervisors of Curriculum and Instruction

Ms. Jacqueline Brownell, Language Arts \& Media K-12
Ms. Julie Colby, Mathematics K- 12
Mr. Shawn Counard, Athletics, Physical Education/Health K-12
Ms. Kat D'Ambra, Guidance K-12
Ms. Cynthia Moskalow, Special Education 7 - Post Graduation
Mr. Gavin Quinn, Science $K-12$
Ms. Roseth Rodriguez, Social Studies \& World Languages K - 12
Ms. Patricia Rowe, Arts, Technology, Business K-12
Ms. Leslie Wyers, Special Education Pre-K - 6

## Course Description and Fundamental Concepts

The Grade 6 Enriched Mathematics course is designed to teach and to focus on applying mathematical concepts in real-world situations using higher order thinking skills while implementing the sixth grade NJ Student Learning Standards (NJSLS). This course also introduces several seventh grade mathematics NJSLS standards.
(1) Students use reasoning about multiplication and division to solve ratio and rate problems about quantities. By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication and division with ratios and rates. Thus students expand the scope of problems for which they can use multiplication and division to solve problems, and they connect ratios and fractions. Students solve a wide variety of problems involving ratios and rates.
(2) Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for dividing fractions make sense. Students use these operations to solve problems. Students extend their previous understandings of number and the ordering of numbers to the full system of rational numbers, which includes negative rational numbers, and in particular negative integers. They reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of the coordinate plane.
(3) Students understand the use of variables in mathematical expressions. They write expressions and equations that correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students understand that expressions in different forms can be equivalent, and they use the properties of operations to rewrite expressions in equivalent forms. Students know that the solutions of an equation are the values of the variables that make the equation true. Students use properties of operations and the idea of maintaining the equality of both sides of an equation to solve simple one-step equations. Students construct and analyze tables, such as tables of quantities that are in equivalent ratios, and they use equations (such as $3 x=y$ ) to describe relationships between quantities.
(4) Building on and reinforcing their understanding of numbers, students begin to develop their ability to think statistically. Students recognize that a data distribution may not have a definite center and that different ways to measure center yield different values. The median measures center in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range or mean absolute deviation) can also be useful for summarizing data because two very different sets of data can have the same mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected.
(5) Students also build on their work with area in elementary school by reasoning about relationships among shapes to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, students discuss, develop, and justify formulas for areas of triangles and parallelograms. Students find areas of polygons and surface areas of prisms
and pyramids by decomposing them into pieces whose area they can determine. They reason about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to fractional side lengths. They prepare for work on scale drawings and constructions in Grade 7 by drawing polygons in the coordinate plane.
(6) Students develop a unified understanding of numbers, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers.

## Grade 6 Enriched Overview

## 1. Ratios and Proportional Relationships

- Understand ratio concepts and use ratio reasoning to solve problems.
- Analyze proportional relationships and use them to solve real-world and mathematical problems.


## 2. The Number System

- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute fluently with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.
- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.


## 3. Expressions and Equations

- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.


## 4. Geometry

- Solve real-world and mathematical problems involving area, surface area, and volume.


## 5. Statistics and Probability

- Develop understanding of statistical variability.
- Summarize and describe distributions.


## Mathematical Practice Standards

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

## Subject/Content Standards

Include grade appropriate subject/content standards that will be addressed

## 6.RP Ratios and Proportional Relationships

A. Understand ratio concepts and use ratio reasoning to solve problems.

1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was $2: 1$, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."
2. Understand the concept of a unit rate $\mathrm{a} / \mathrm{b}$ associated with a ratio $\mathrm{a}: \mathrm{b}$ with $\mathrm{b} \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."
3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., $30 \%$ of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

## 6.NS The Number System

A. Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c)$. How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi ?
B. Compute fluently with multi-digit numbers and find common factors and multiples.
2. Fluently divide multi-digit numbers using the standard algorithm.
3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property
to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.
C. Apply and extend previous understandings of numbers to the system of rational numbers.
5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
7. Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3 \mathrm{oC}>-7 \mathrm{oC}$ to express the fact that -3 oC is warmer than -7 oC .
c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.
8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

## 6.EE Expressions and Equations

A. Apply and extend previous understandings of arithmetic to algebraic expressions.

1. Write and evaluate numerical expressions involving whole-number exponents.
2. Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-\mathrm{y}$.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations,
including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s 3$ and $A=6 s 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.
3. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 \mathrm{x}+3 \mathrm{y})$; apply properties of operations to $\mathrm{y}+\mathrm{y}+\mathrm{y}$ to produce the equivalent expression $3 y$.
4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y +y $+y$ and $3 y$ are equivalent because they name the same number regardless of which number $y$ stands for.
B. Reason about and solve one-variable equations and inequalities.
5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
7. Solve real-world and mathematical problems by writing and solving equations of the form $x+$ $\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which $\mathrm{p}, \mathrm{q}$ and x are all nonnegative rational numbers.
8. Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
C. Represent and analyze quantitative relationships between dependent and independent variables.
9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.

## 6.G Geometry

A. Solve real-world and mathematical problems involving area, surface area, and volume.

1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=1 \mathrm{wh}$ and $\mathrm{V}=\mathrm{B}$ h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
3. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second
coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

## 6.SP Statistics and Probability

A. Develop understanding of statistical variability.

1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
B. Summarize and describe distributions.
4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
5. Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

## 7.RP Ratios and Proportional Relationships

A. Analyze proportional relationships and use them to solve real-world and mathematical problems.

1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.
2. Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

## 7.NS The Number System

A. Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
a. Describe situations in which opposite quantities combine to make 0 . For example, in the first round of a game, Maria scored 20 points. In the second round of the same game, she lost 20 points. What is her score at the end of the second round?
b. Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $|\mathrm{q}|$ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
c. Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+$ $(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
d. Apply properties of operations as strategies to add and subtract rational numbers.
2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If $p$ and $q$ are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real world contexts.
c. Apply properties of operations as strategies to multiply and divide rational numbers.
d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
3. Solve real-world and mathematical problems involving the four operations with rational numbers.

## Mathematical Practice Standards

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

| $\begin{gathered} \text { Standard } 8.1 \\ (K-12) \end{gathered}$ |  | Educational Technology: All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge. |
| :---: | :---: | :---: |
| Unit Addressed | Strand Letter | Standard Description |
| Units 1 | Strand A | Technology Operations and Concepts: Students demonstrate a sound understanding of technology concepts, systems, and operations. |
| Units 1, 2, 5 | Strand B | Creativity and Innovation: Students demonstrate creative thinking, construct knowledge and develop innovative products and process using technology. |
| Units 1, 2, 5 | Strand C | Communication and Collaboration: Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning of others. |
| Units 1, 2, 3, 4, 5 | Strand D | Digital Citizenship: Students understand human, cultural, and societal issues related to technology and practice legal and ethical behavior. |
| Units 2, 5 | Strand E | Research and Information Fluency: Students apply digital tools to gather, evaluate, and use information. |
| Units 2, 5 | Strand F | Critical thinking, problem-solving, and decision making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. |

Career Ready Practices (Standard 9)
List appropriate units below for which CRPs will be addressed

| Unit Addressed | Standard \# | Standard Description |
| :--- | :---: | :--- |
| Units 1, 2, 3, 4,5 | CRP1 | Act as a responsible and contributing citizen and employee. |
| Units 1, 2, 3, 4,5 | CRP2 | Apply appropriate academic and technical skills. |
|  | CRP3 | Attend to personal health and financial well-being. |


| Units 1, 2, 3, 4, 5 | CRP4 | Communicate clearly and effectively and with reason. |
| :--- | :--- | :--- |
|  | CRP5 | Consider the environmental, social and economic impacts of decisions. |
| Units 1, 2, 3, 4, 5 | CRP6 | Demonstrate creativity and innovation. |
| Units 1, 2, 3, 4, 5 | CRP7 | Employ valid and reliable research strategies. |
| Units 1, 2, 3, 4, 5 | CRP8 | Utilize critical thinking to make sense of problems and persevere in <br> solving them. |
|  | CRP9 | Model integrity, ethical leadership, and effective management. |
|  | CRP10 | Plan education and career paths aligned to personal goals. |
|  | CRP11 | Use technology to enhance productivity. |
|  |  | WRP12 |
|  |  | Work productively in teams while using cultural global competence |

## Interdisciplinary Connections

List any other content standards addressed as well as appropriate units

| Visual \& Performing Arts Integration (Standard 1) <br> List appropriate units below for which standards (1.1 through 1.4) may be addressed |  |  |
| :---: | :---: | :--- |
| Unit Addressed | Standard \# | Standard Description |
| Unit 4 | Standard <br> $\mathbf{1 . 1}$ | The Creative Process: All students will demonstrate an understanding of <br> the elements and principles that govern the creation of works of art in <br> dance, music, theatre, and/or visual art. |
| Unit 2 | Standard <br> $\mathbf{1 . 2}$ | History of the Arts and Culture: All students will understand the role, <br> development, and influence of the arts throughout history and across <br> cultures. |
| Units 1, 2, 4, 5 | Standard | Performing/Presenting/Producing: All students will synthesize those <br> skills, media, methods, and technologies appropriate to creating, <br> performing, and/or presenting works of art in dance, music, theatre, <br> and/or visual art. |
| Units 1, 2, 3, 4 | Standard <br> $\mathbf{1 . 4}$ | Aesthetic Responses \& Critique Methodologies: All students will <br> demonstrate and apply an understanding of arts philosophies, judgment, <br> and analysis to works of art in dance, music, theatre, and/or visual art. |


| Other Interdisciplinary Content Standards <br> List appropriate units below for any other content/standards that may be addressed |  |  |
| :---: | :---: | :---: |
| Unit Addressed | Content / Standard \# | Standard Description |
| Units 1, 2, 3, 4, 5 | RI.6.4 | Determine the meaning of words and phrases as they are used in a text, including figurative and connotative meanings; analyze the impact of a specific word choice on meaning and tone. |
| Units 1, 2, 3, 4, 5 | W.6.4. | Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. |
| Units 1, 2, 4 | 1.3.8.D. 2 | Apply various art media, art mediums, technologies, and processes in the creation of allegorical, theme-based, two- and three-dimensional works of art, using tools and technologies that are appropriate to the theme and goals. |
| Unit 1 | MS-ESS2-3 | Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions |
| Units 1, 3 | MS-PS2-2 | Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. |
| Unit 5 | MS-LS2-1 | Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. |

Pacing Guide (All Dates are approximate based on the school calendar)

| Unit/ Topic | Month <br> (w/Approx number of Teaching Days) |
| :---: | :---: |
| Unit 1: Number Systems <br> Compute with Multi-Digit Numbers Multiply and Divide Fractions Integers and Coordinate Planes Integers | September <br> (~19 days) |
|  | October (~19 days) |
|  | November (~16 days) |
| Unit 2: Ratios and Proportional Relationship Ratios and Rates Fractions, Decimals and Percents | December <br> (~15 days) |
|  | January (~18 days) |
| Unit 3: Expressions and Equations <br> Expressions <br> Equations <br> Functions | February <br> (~18 days) |
|  | $\underset{(\sim 15-20 \text { days })}{\text { March }}$ |
| Unit 3: Expressions and Equations Inequalities | April |
| Unit 4: Geometry Area | ( $\sim 15-20$ days) |
| Unit 4: Geometry <br> Volume and Surface Area | May |
| Unit 5: Statistics \& Probability Statistical Measures | (~18 days) |
| Unit 5: Statistics \& Probability Statistical Displays End of Year Test \& Project | $\underset{(\sim 15 \text { days })}{\text { June }}$ |

## Units

Contact the Content Supervisor for unit details.

